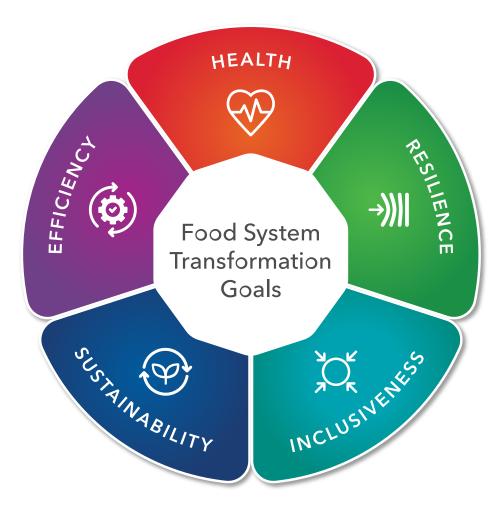


Climate Change and Food Systems

Transformation for Adaptation, Mitigation, and Resilience


Charlotte Hebebrand & Channing Arndt

Nigeria Country Office, International Food Policy Research Institute

June 23, 2022

Climate change poses a growing threat to sustainable food systems

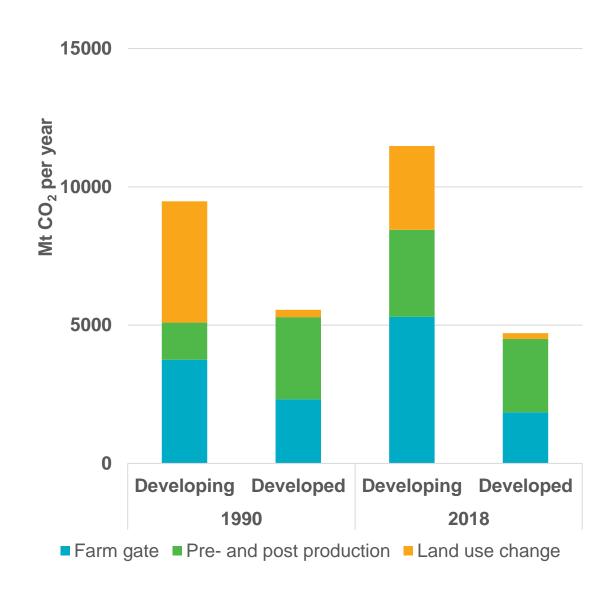
- Global food and nutrition security is worsening
 - Malnutrition has been increasing for several years
 - COVID-19
 - Rising conflicts
 - Current war in Ukraine
- Sustainability is threatened by environmental degradation and biodiversity loss
- Climate change poses a growing threat
 - Higher temperatures, changing precipitation patterns, sea level rises, and extreme weather
 - Reducing agricultural productivity, disrupting food supply chains, and displacing communities

International spotlight on food systems and climate change

- Events in 2021 cemented food systems in the climate change and SDG agenda
 - The UNFSS produced new commitments and coalitions to pursue the SDGs with a food systems centered approach
 - 2021 Tokyo Nutrition for Growth Summit highlighted link between climate change and nutrition challenges
 - At COP26, 137 countries pledged to halt and reverse land degradation by 2030
- 2021 commitments will require concrete follow-up
 - Need a significant shift in public and private investment
 - UN Conference on Biodiversity, WTO ministerial conference, COP27, ... provide further opportunities to advance action

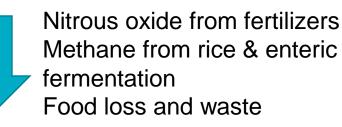
Adaptation

Adaptation is urgent for food systems

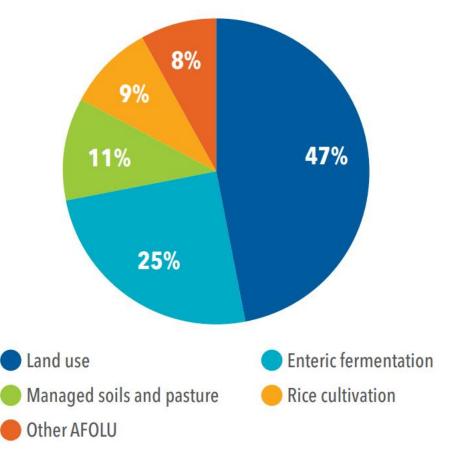

- Adaptation must address changing growing conditions, water scarcity, destructive weather events, and disruptions along value chains (e.g. price volatility, conflict)
- But lessons from COVID-19 show that food systems can be adaptive
- Promising Innovations:
 - Digital technologies
 - New crop varieties
 - Landscape management

Supported by an enabling environment

Food systems contribute to climate change

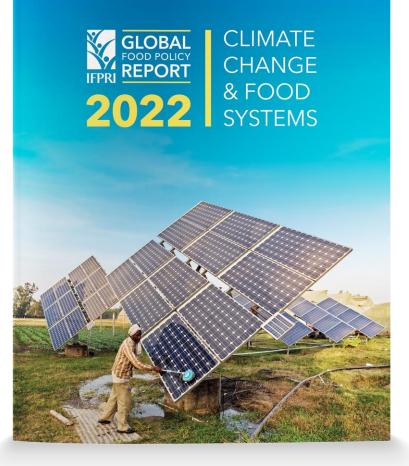

- Food systems contribute more than 33% of total emissions and about 21% of total emissions come from agriculture, forestry and other land use (AFOLU).
- Developing country emissions from food systems are large and rising
- AFOLU has serious potential to become a net emissions sink — pulling more GHGs out of the atmosphere than it emits

Mitigation


- AFOLU is the only economic sector with serious potential to become a net emissions sink — pulling more GHGs out of the atmosphere than it emits
- Land use change accounts for half of CO2eq emissions from AFOLU, and offers opportunities to turn landscapes into large net sinks (e.g. US) in developing countries

But we must also:

Sustainable production and healthy diets


Global AFOLU emissions shares by source

Effective policies are critical for food systems transformation

Appropriate design of policies, institutions and governance systems at all scales can contribute to land-related adaptation and mitigation while facilitating the pursuit of climate-adaptive development pathways – IPCC 2019

- Innovation and change require an enabling environment of supportive policies and institutions
- Collaboration is needed from the local to international level
- Change must be inclusive and have safeguards in place to protect vulnerable communities

Table of Contents

Chapter 1:Climate Change and Food Systems: Transforming Food Systems for Adaptation, Mitigation, and Resilience **Chapter 2**: Repurposing Agricultural Support: Creating Food Systems **Incentives** to Address Climate Change **Chapter 3**: **Trade** and Climate Change: The Role of Reforms in Ensuring Food Security and Sustainability **Chapter 4**: **Research** for the Future: Investments for Efficiency, Sustainability, and Equity **Chapter 5**: Climate **Finance**: Funding Sustainable Food Systems Transformation Chapter 6: Social Protection: Designing Adaptive Systems to Build **Resilience to Climate Change** Chapter 7: Landscape Governance: Engaging Stakeholders to Confront Climate Change **Chapter 8**: Nutrition and Climate Change: Shifting to Sustainable Health Diets Chapter 9: Rural Clean Energy Access: Accelerating Climate Resilience Chapter 10: Bio-innovations: Genome-Edited Crops for Climate-Smart Food Systems **Chapter 11**: Food Value Chains: Increasing Productivity, Sustainability, and **Resilience to Climate Change** Chapter 12: Digital Innovations: Using Data and Technology for Sustainable Food Systems

(+ Six Regional Chapters)

Policy recommendations (1)

- R&D for "disruptive" innovations in production practices
 - Investment in R&D equivalent to 1% of agricultural output could increase food production by 30%
 - Adopting "green" innovations in LMICs could reduce AFOLU emissions by over 40%
 - Double current levels of public investments to reach ~ \$15 billion for innovations in LMICs
- Holistic governance/mgmt. of WLE and forests
 - Provide incentives for local governance and integrated landscape mgmt. (e.g. multistakeholder platforms for CC)
 - Strengthen land tenure rights for individuals as well as communities to encourage long-term investment and sustainability
 - Identify productive-use locations that can jointly support energy, water, and food security

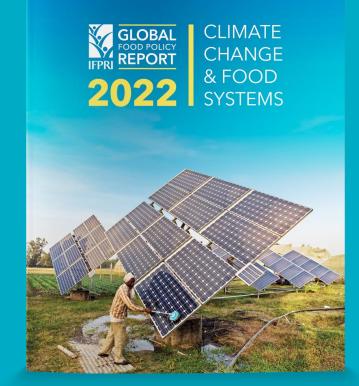
Policy recommendations (2)

- Promote healthy diets and sustainable production
 - Use proven fiscal measures to reduce consumption of unhealthy foods and improve access and affordability of healthy foods for over 3 billion people who cannot afford a healthy diet
 - Assist countries in adopting food-based dietary guidelines (e.g. recommended 400 grams of fruits and vegetables per day)
 - Promote a healthy food environment through standards, labeling, and certifications
- Improve efficiency of value chains, facilitate trade, and reduce food loss
 - Promote free and fair trade, while accounting for climate effects of food trade (e.g. pricing carbon)
 - Invest in efficient and safe food storage and transport such as lowemissions cold chains to prevent food loss (currently 8% of emissions)

Policy recommendations (3)

- Ensure inclusion and expand social protection
 - Invest in inclusive soft infrastructure (e.g. digital climate services, insurance, advisory and financial services) for greater productivity
 - Strengthen women's participation in clean energy systems, water, systems, landscape governance, etc.
 - Make social protection "climate smart" by incorporating incentives for sustainable activities and combining with climate investment
- Reorient financial flows
 - Repurpose a portion of agricultural subsidies (\$620 billion per year) toward R&D on green innovations
 - Explore innovative tools (e.g. publicly guaranteed green funds, carbon markets, or CC transparency requirements for banks/investors) to increase food systems climate investment to \$350 billion per year

Thanks to our authors


Chapter 1: Johan Swinnen, Channing Arndt, and Rob Vos **Chapter 2**: Rob Vos, Will Martin, and Danielle Resnick Chapter 3: Joseph Glauber **Chapter 4**: Gert-Jan Stads, Keith Wiebe, Alejandro Nin-Pratt, Timothy Sulser, Rui Benfica, Fasil Reda, and Ravi Khetarpal Chapter 5: Eugenio Díaz-Bonilla and Ruben Echeverría **Chapter 6**: Daniel Gilligan, Stephen Devereux, and Janna Tenzing Chapter 7: Ruth Meinzen-Dick, Wei Zhang, Hagar ElDidi, and Pratiti Priyadarshini **Chapter 8**: Marie Ruel and Jessica Fanzo Chapter 9: Claudia Ringler, Alebachew Belete, Steven Mathetsa, and Stefan Uhlenbrook Chapter 10: José Falck-Zepeda, Patricia Biermayr-Jenzano, Maria Mercedes Roca, Ediner Fuentes-Campos, and Enoch Mutebi Kikulwe Chapter 11: Alan de Brauw and Grazia Pacillo Chapter 12: Jawoo Koo, Berber Kramer, Simon Langan, Aniruddha Ghosh, Andrea Gardeazabal Monsalue, and Tobias Lunt

IFPRI Author

IWMI Author

ABC Author

External/partner org author

